Data Link Control

Flow Control

- In Data Link Layer, we deal with issues related to point to point links
 - -Flow control is one of these issues
- Flow control is needed since the sending entity should not overwhelm the receiving entity
 - Recipient needs some time to process incoming packets
 - If sender sends faster than recipient processes, then buffer overflow occurs
 - flow control prevents buffer overflow

Performance Metrics and Delays (Section 5.3)

- Transmission time (delay)
 - -Time taken to emit all bits into medium
- Propagation time (delay)
 - -Time for a bit to traverse the link
- Processing time (delay)
 - —time spent at the recipient or intermediate node for processing
- Queuing time (delay)

-waiting time at the queue to be sent out

Model of Frame Transmission

Stop and Wait Flow Control

- Source transmits frame
- Destination receives frame and replies with acknowledgement (ACK)
- Source waits for ACK before sending next frame
- Destination can stop flow by not sending ACK
- Works well for large frames
- Inefficient for smaller frames

Stop and Wait Flow Control

- However, generally large block of data split into small frames
 - -Called "Fragmentation"
 - Limited buffer size at receiver
 - Errors detected sooner (when whole frame received)
 - On error, retransmission of smaller frames is needed
 - Prevents one station occupying medium for long periods
- Channel Utilization is higher when
 - -the transmission time is longer than the propagation time
 - -frame length is larger than the bit length of the link
 - -actually last two expressions mean the same
 - -see the derivations on board

Figure 5.6 Stop and Wait Link Utilization

propagation time = D, transmission time = T

Sliding Window Flow Control

- The problem of "Stop and Wait" is not able to send multiple packets
- Sliding Window Protocol allows multiple frames to be in transit
- Receiver has buffer of *W* (called window size) frames
- Transmitter can send up to W frames without ACK
- Each frame is numbered
 - Sequence number bounded by size of the sequence number field (*k* bits)
 - thus frames are numbered modulo $2^{k}(0 \dots 2^{k-1})$
- ACK includes number of next frame expected

Sliding Window Flow Control (W = 7)

(b) Receiver's perspective

Example of a Sliding Window Protocol (W = 7)

Sliding Window Enhancements in Implementation

 Receiver can acknowledge frames without permitting further transmission (*Receive Not Ready*)

-Must send a normal acknowledgement to resume

- If the link is duplex, use *piggybacking*
 - -Send data and ack together in one frame
 - frame has both data and ack fields
 - -If no data to send, use acknowledgement frame
 - —If data but no acknowledgement to send, send last acknowledgement number again

Sliding Windows Performance - 1

- two cases: $W \ge 2a+1$ and W < 2a+1, where a=D/T
- details are on board

Sliding Windows Performance - 2

END OF MIDTERM EXAM

The rest of this ppt file is not in the midterm exam coverage

Error Detection and Control

- So far we have seen flow control mechanisms where frames are transmitted without errors
 - in real life any transmission facility may introduce errors
- So we have to
 - —detect errors
 - -if possible, correct errors (not in the scope of CS 408)
 - —adopt flow control algorithms such that erroneous frames are retransmitted

Types of Errors

- Single bit errors
 - -isolated errors
 - -affects (flips) one bit, nearby bits are not altered
 - -not so common in real life
- Burst errors
 - -a sequence of bits are affected
 - -most common case
 - —a burst error of length B is a contiguous sequence of B bits in which the first and the last and some intermediate bits are erroneously flipped.
 - not necessarily all bits between the first and the last one

Error Detection

 Additional bits added by transmitter as *error* detection code

-receiver checks this code

- Parity
 - -single bit added to the end of the data
 - -Value of parity bit is such that data and parity have even (even parity) or odd (odd parity) number of ones
 - -Even number of bit errors goes undetected
 - thus not so useful

Error Detection Process using Cyclic Redundancy Check

Cyclic Redundancy Check (CRC)

- For a data block of k bits, transmitter generates n-k bit frame check sequence (FCS) and appends it to the end of the data bits
- Transmits *n* bits, which is exactly divisible by some number (generator)
 - —the length of the generator is n-k+1 and first and last bits are 1
- Receiver divides the received frame by generator —If no remainder, assume no error
- Division is binary division (not the same as integer or real division)
- See board for the math details and example

Cyclic Redundancy Check (CRC)

- Standard CRCs (generators are standard)
 - -checks all single, double and odd number of errors
 - —checks all burst errors with length less than or equal to the length of FCS (n-k)
 - -checks most of the burst errors of longer length
 - for bursts of length n-k+1 (length of generator), probability of an undetected error is 1/2^{n-k-1}
 - for longer bursts, probability of an undetected error is 1/2^{n-k}

Error Control

- Actions to be taken against
 - —Lost frames
 - —Damaged frames
- Automatic repeat request (ARQ) mechanism components
 - —Error detection
 - —Positive acknowledgment
 - -Retransmission after timeout
 - -Negative acknowledgement and retransmission

Automatic Repeat Request (ARQ)

- Stop-and-wait ARQ
- Go-back-N ARQ
- Selective-reject (selective retransmission) ARQ

Stop and Wait ARQ

- Source transmits single frame
- Wait for ACK
- If received frame is damaged, discard it
 - If transmitter receives no ACK within timeout, retransmits
- If ACK damaged, transmitter will not recognize it
 - -Transmitter will retransmit after timeout
 - —Receiver gets two copies of frame, but disregards one of them
 - -Use ACK₀ and ACK₁
 - ACK_i means "I am ready to receive frame i"

Stop-and-Wait ARQ – Example

Stop and Wait - Pros and Cons

- Simple
- Inefficient

Go-Back-N ARQ

- Based on sliding window
- If no error, ACK as usual with next frame expected
 - —ACK_i means "I am ready to receive frame i" and "I received all frames between i and my previous ack"
- Sender uses window to control the number of unacknowledged frames
- If error, reply with rejection (negative ack)
 - Discard that frame and all future frames until the frame in error received correctly
 - —Transmitter must go back and retransmit that frame and all subsequent frames

Go-Back-N ARQ -Damaged Frame

- Receiver detects error in frame *i*
- Receiver sends "reject i"
- Transmitter gets "reject i"
- Transmitter retransmits frame *i* and all subsequent frames

Go-Back-N ARQ - Lost Frame (1)

- Frame *i* lost
- Transmitter sends frame *i*+1
- Receiver gets frame *i*+1 out of sequence
- Receiver sends "reject i"
- Transmitter goes back to frame *i* and retransmits it and all subsequent frames

Go-Back-N ARQ- Lost Frame (2)

- Frame *i* lost and no additional frame sent
- Receiver gets nothing and returns neither acknowledgment nor rejection
- Transmitter times out and sends acknowledgment frame with P bit set to 1 (this is actually a command for ack request)

Receiver interprets this as an ack request command which it acknowledges with the number of the next frame it expects (*i*)

• Transmitter then retransmits frame *i*

Go-Back-N ARQ- Damaged/Lost Acknowledgment

- Receiver gets frame *i* and sends acknowledgment (*i* + 1) which is lost
- Acknowledgments are cumulative, so next acknowledgement (*i*+*n*) may arrive before transmitter times out on frame *i*

==> NO PROBLEM

 If transmitter times out, it sends acknowledgment request with P bit set, as before

Go-Back-N ARQ- Damaged Rejection

• As in lost frame (2)

—sender asks the receiver the last frame received and continue by retransmitting next frame

Go-Back-N ARQ -Example

Selective Reject

- Also called *selective retransmission*
- Only rejected frames are retransmitted
- Subsequent frames are accepted by the receiver and buffered
- Minimizes retransmissions
- Receiver must maintain large enough buffer
- Complex system

Selective Reject -Diagram

Issues

• RR with P=1 is from HDLC standard

- -pure protocol just have retransmissions after timeout
 - as explained in Tanenbaum

Time ------

Issues – Window Size

- Given n-bit sequence numbers, what is Max window size?
 - -go-back-n ARQ \rightarrow 2ⁿ-1
 - Why?
 - what about receiver's window size?
 - It is 1, why?
 - -selective-reject(repeat) $\rightarrow 2^{n-1}$
 - Why?
- See the reasons on the board
Issues - Buffer Size

- Go-back-n ARQ
 - -sender needs to keep a buffer equal to window size
 - for possible retransmissions
 - —receiver does not need any buffer (for flow/error control)
 - why?
- Selective reject
 - —sender needs to keep a buffer of window size for retransmissions
 - -receiver keeps a buffer equal to window size

Issues - Performance

- Notes on board
- Appendix at the end of Chapter 14
 - -selective reject ARQ is not in the book

High Level Data Link Control

- HDLC
- ISO Standard
- Basis for some other DLL protocols

HDLC Station Types

- Primary station
 - -Controls operation of link
 - -Frames issued are called commands
- Secondary station
 - —Under control of primary station
 - -Frames issued called responses
- Combined station
 - -May issue commands and responses

HDLC Link Configurations

- Unbalanced
 - —One primary and one or more secondary stations
 - -Supports full duplex and half duplex
- Balanced
 - —Two combined stations
 - -Supports full duplex and half duplex

HDLC Transfer Modes (1)

- Normal Response Mode (NRM)
 - -Unbalanced configuration
 - -Primary initiates transfer to secondary
 - —Secondary may only transmit data in response to command from primary
 - —Terminal-host communication
 - Host computer as primary
 - Terminals as secondary
 - -not so common nowadays

HDLC Transfer Modes (2)

- Asynchronous Balanced Mode (ABM)
 - Balanced configuration
 - Either station may initiate transmission without receiving permission
 - -Most widely used

Frame Structure

- All transmissions in frames
- Single frame format for all data and control exchanges

Frame Structure Diagram

bits extendable

Flag Fields

- Delimit frame at both ends
- 01111110
- Receiver hunts for flag sequence to synchronize
- Bit stuffing used to avoid confusion with data containing 01111110
 - -0 inserted after every sequence of five 1s
 - -If receiver detects five 1s it checks next bit
 - If 0, it is deleted
 - If 1 and seventh bit is 0, accept as flag
 - -If sixth and seventh bits 1, sender is indicating abort

Bit Stuffing Example

Original Pattern:

1111111111101111101111110

After bit-stuffing

1111101111101101111101011111010

Address Field

- Identifies secondary station that sent or will receive frame
- Usually 8 bits long (but 7 bits are effective)
- May be extended to multiples of 7 bits with prior agreement
 - —leftmost bit of each octet indicates that it is the last octet (1) or not (0)

(b) Extended Address Field

Frame Types

- Information data to be transmitted to user
 - Acknowledgment is piggybacked on information frames
- Supervisory ARQ messages (RR/RNR/REJ/SREJ) when piggyback not used
- Unnumbered supplementary link control functions. For examples,
 - -setting the modes
 - -disconnect
- Control field is different for each frame type

Control Field Diagram

(c) 8-bit control field format

(d) 16-bit control field format

Poll/Final Bit

- Use depends on context. A typical use is below.
- Command frame
 - P bit set to 1 to solicit (poll) supervisory frame from peer
- Response frame
 - —F bit set to 1 to indicate response to soliciting command

Information Field

- Only in information and some unnumbered frames
- Must contain integral number of octets
- Variable length

Frame Check Sequence Field

- FCS
- Error detection
- 16 bit CRC
- Optional 32 bit CRC

HDLC Operation

- Exchange of information, supervisory and unnumbered frames
- Three phases
 - -Initialization
 - -Data transfer
 - —Disconnect

Initialization

- Issue one of six *set-mode* commands
 - -Signals other side that initialization is requested
 - —Specifies mode (NRM, ABM, ARM)
 - —Specifies 3- or 7-bit sequence numbers
- If request accepted HDLC module on other side transmits unnumbered acknowledged (UA) frame
- If request rejected, disconnected mode (DM) sent
- All sent as unnumbered frames

Data Transfer

- Both sides may begin to send user data in I-frames
 - N(S): sequence number of outgoing I-frames
 - modulo 8 or 128, (3- or 7-bit)
 - N(R) acknowledgment for I-frames received
 - seq. number of I-frame expected next
- S-frames are also used for flow and error control
 - Receive ready (RR) frame acknowledges last I-frame received
 - Indicating next I-frame expected
 - Used when there is no reverse data
 - Receive not ready (RNR) acknowledges, but also asks peer to suspend transmission of I-frames
 - When ready, send RR to restart
 - REJ initiates go-back-N ARQ
 - Indicates last I-frame received has been rejected
 - Retransmission is requested beginning with N(R)
 - Selective reject (SREJ) requests retransmission of single frame

Disconnect

- Send disconnect (DISC) frame
- Remote entity must accept by replying with UA —Informs layer 3 user about the termination of connection

Examples of Operation (1)

Examples of Operation (2)

Other DLC Protocols (LAPB,LAPD)

- Link Access Procedure, Balanced (LAPB)
 - -Part of X.25 (ITU-T)
 - -Subset of HDLC ABM (Async. Balanced Mode)
 - Point to point link between user and packet switching network node
 - —HDLC frame format
- Link Access Procedure, D-Channel (LAPD)
 - —Part of ISDN (ITU-T)
 - -ABM
 - —Always 7-bit sequence numbers (no 3-bit)
 - —always 16-bit CRC
 - -16-bit address field

Other DLC Protocols (LLC)

- Logical Link Control (LLC)
 - IEEE 802
 - For LANs (Local Area Networks)
 - Link control split between medium access control layer (MAC) and LLC (on top of MAC)
 - Different frame format
 - Two addresses needed (sender and receiver) actually at MAC layer
 - Sender and receiver SAP addresses
 - Control field is same as HDLC (16-bit version for I and S frames; 8bit for U frames)
 - No primary and secondary all stations are peers
 - Error detection at MAC layer
 - 32 bit CRC

[MAC control	Dest. MAC address	Source MAC address	DSAP	SSAP	LLC control	Info.	FCS
	variable	16 or 48	16 or 48	8	8	16*	variable	32

Other DLC Protocols (LLC)

- LLC Services
 - -3 alternatives
 - —Connection Mode Services
 - Similar to HDLC ABM
 - —Unacknowledged connectionless services
 - no connection setup
 - No flow-control, no error control, no acks (thus not reliable)
 - good to be used with TCP/IP. Why?
 - —Acknowledged Connectionless Service
 - No connection setup
 - reliable communication